Line Follower



1. Tujuan [Kembali]

  • Dapat mengimplementasikan dan menguji kemampuan navigasi otomatis pada line follower.
  • Dapat memahami penggunaan line follower dalam kehidupan sehari-hari.
  • Dapat membuat rangkaian line follower dengan baik dan benar.
  • Memahami komponen-komponen yang akan digunakan.

a.) DC Voltmeter
DC Voltmeter merupakan alat yang digunakan untuk mengukur besar tengangan pada suatu komponen. Cara pemakaiannya adalah dengan memparalelkan kaki2 Voltmeter dengan komponen yang akan diuji tegangannya.
 


Berikut adalah Spesifikasi dan keterangan Probe DC Volemeter







  
b.) Baterai


Spesifikasi

  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr

Bahan

    1. Resistor

       Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R). 
Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.

Cara menghitung nilai resistor :

Tabel warna resistor

Penghitungan nilai resistor

Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak  = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

Spesifikasi



    2. Dioda



        Menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.

        
Spesifikasi dioda



3. Transistor


        Merupakan transistor tipe NPN yang digunakan untuk switching agar mengaktifkan kontak relay dan relay tersebut akan memberikan kontak pada motor DC dan output lainnya.
Spesifikasi :
    • Bi-Polar Transistor
    • DC Current Gain (hFE) is 800 maximum
    • Continuous Collector current (IC) is 100mA
    • Emitter Base Voltage (VBE) is > 0.6V
    • Base Current(IB) is 5mA maximum

        Spesifikasi transistor



        Konfigurasi transistor

    4. Relay

        spesifikasi relay

        konfigurasi relay

    5.  Op-Amp

            Spesifikasi

            Konfigurasi pin
    
        Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.


    6. motor DC

            Spesifikasi motor DC

             Konfigurasi motor DC
    
            Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.


    7. Potensiometer
        Potensiometer (POT) adalah salah satu jenis Resistor yang Nilai Resistansinya dapat diatur sesuai dengan kebutuhan Rangkaian Elektronika ataupun kebutuhan pemakainya. 


    8. Ground


    9. LDR

        spesifikasi
  • tegangan maksimum (DC):150 V
  • konsumsi arus maksimum :100mW
  • Tingkatan Resistansi/Tahanan : 10Ω sampai 100KΩ
  • Puncak spektral: 540nm (ukuran gelombang cahaya)
  • Waktu Respon Sensor : 20ms – 30ms.
                      Konfigurasi
                
                Grafik respon

    10. Sensor infrared


        spesifikasi 
  • Board Power Supply: 3 – 5 V
  • Range: 2cm to 30cm
  • Angle: 35 degrees
  • Power LED: Illuminates when power is applied
  • Obstacle LED: Illuminates when obstacle is detected
  • Distance Adjust: Adjust detection distance. CCW decreases distance. CW increases distance.

        modul interface specification:

  • VCC : 3V - 12V Power Supply (Can directly connect to 5V or 3.3V micrcontroller)
  • GND : Connect to GND
  • OUT : Board digital output interface (0 and 1)

        grafik responsi sensor




     11.GD2P12

    GP2D12 (Infrared Range Detector) adalah sensor jarak yang berbasikan  infra red, sensor ini dapat mendeteksi obyek dengan jarak 8 sampai 80 cm. Output  dari GP2D12 adalah berupa tegangan analog

 


    12. Flame Sensor

 

 Prinsip kerja

Flame Detector menggunakan metode optik seperti UV (ultraviolet) dan IR (infrared) untuk mengidentifikasi percikan api atau flame. Hal ini dilakukan melalui pencitraan visual api, spektroskopi, serta penyerapan cahaya pada gelombang tertentu. Flame Detector dapat membedakan antara peringatan palsu dan api kebakaran sungguhan.

Bahan bakar industri yang mudah terbakar meliputi bensin, hidrogen, belerang, alkohol, LNG/LPG, minyak tanah, kertas, disel, kayu, jet bahan bakar, tekstil, ethylene, dan pelarut.

Teknologi Flame Sensing yang umum digunakan meliputi Visual Flame Imaging, UV (ultraviolet), MSIR (Multi-Spectrum Infrared), dan UV/IR (gabungan ultraviolet/infrared). Keempat teknologi tersebut didesain berdasarkan deteksi radiasi line-of-sight dari visible, UV, hingga IR spectral bands.

Pemilihan teknologi Flame Detector harus memenuhi persyaratan aplikasi pemantauan api, termasuk jangkauan deteksi, waktu merespon, Field of View (FOV), kekebalan terhadap false alarm, dan self-diagnostik.


 

1. Resistor

Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.

Simbol Resistor Sebagai Berikut :


Resistor dalam suatu teori dan penulisan formula yang berhubungan dengan resistor disimbolkan dengan huruf “R”. Kemudian pada desain skema elektronika resistor tetap disimbolkan dengan huruf “R”, resistor variabel disimbolkan dengan huruf “VR” dan untuk resistorjenis potensiometer ada yang disimbolkan dengan huruf “VR” dan “POT”.

Kapasitas Daya Resistor

Kapasitas daya pada resistor merupakan nilai daya maksimum yang mampu dilewatkan oleh resistor tersebut. Nilai kapasitas daya resistor ini dapat dikenali dari ukuran fisik resistor dan tulisan kapasitas daya dalamsatuan Watt untuk resistor dengan kemasan fisik besar. Menentukan kapasitas daya resistor ini penting dilakukan untuk menghindari resistor rusak karena terjadi kelebihan daya yang mengalir sehingga resistor terbakar dan sebagai bentuk efisiensi biaya dan tempat dalam pembuatan rangkaian elektronika.

Nilai Toleransi Resistor

Toleransi resistor merupakan perubahan nilai resistansi dari nilai yang tercantum pada badan resistor yang masih diperbolehkan dan dinyatakan resistor dalam kondisi baik. Toleransi resistor merupakan salah satu perubahan karakteristik resistor yang terjadi akibat operasional resistor tersebut. Nilai torleransi resistor ini ada beberapa macam yaitu resistor dengan toleransi kerusakan 1% (resistor 1%), resistor dengan toleransi kesalahan 2% (resistor2%), resistor dengan toleransi kesalahan 5% (resistor 5%) dan resistor dengan toleransi 10% (resistor 10%).

Nilai toleransi resistor ini selalu dicantumkan di kemasan resistor dengan kode warna maupun kode huruf. Sebagai contoh resistor dengan toleransi 5% maka dituliskan dengan kode warna pada cincin ke 4 warna emas atau dengan kode huruf J pada resistor dengan fisik kemasan besar. Resistor yang banyak dijual dipasaran pada umumnya resistor 5% dan resistor 1%.

Jenis-Jenis Resistor

Berdasarkan jenis dan bahan yang digunakan untuk membuat resistor dibedakan menjadi resistor kawat, resistor arang dan resistor oksida logam atau resistor metal film.

Resistor Kawat (Wirewound Resistor)

Resistor kawat atau wirewound resistor merupakan resistor yang dibuat dengan bahat kawat yang dililitkan. Sehingga nilai resistansiresistor ditentukan dari panjangnya kawat yang dililitkan. Resistor jenis ini pada umumnya dibuat dengan kapasitas daya yang besar.

Resistor Arang (Carbon Resistor)

Resistor arang atau resistor karbon merupakan resistor yang dibuat dengan bahan utama batang arang atau karbon. Resistor karbon ini merupakan resistor yang banyak digunakan dan banyak diperjual belikan. Dipasaran resistor jenis ini dapat kita jumpai dengan kapasitas daya 1/16 Watt, 1/8 Watt, 1/4 Watt, 1/2 Watt, 1 Watt, 2 Watt dan 3 Watt.

Resistor Oksida Logam (Metal Film Resistor)

Resistor oksida logam atau lebih dikenal dengan nama resistor metal film merupakan resistor yang dibuah dengan bahan utama oksida logam yang memiliki karakteristik lebih baik. Resistor metal film ini dapat ditemui dengan nilai tolerasni 1% dan 2%. Bentuk fisik resistor metal film ini mirip denganresistor kabon hanya beda warna dan jumlah cicin warna yang digunakan dalam penilaian resistor tersebut. Sama seperti resistorkarbon, resistor metal film ini juga diproduksi dalam beberapa kapasitas daya yaitu 1/8 Watt, 1/4 Watt, 1/2 Watt. Resistor metal film ini banyak digunakan untuk keperluan pengukuran, perangkat industri dan perangkat militer.

Kemudian berdasarkan nilai resistansinya resistor dibedakan menjadi 2 jenis yaitu resistor tetap (Fixed Resistor) dan resistor tidak tetap (Variable Resistor)

Resistor Tetap(Fixed Resistor)

Resistor tetap merupakan resistor yang nilai resistansinya tidap dapat diubah atau tetap. Resistor jenis ini biasa digunakan dalam rangkaian elektronika sebagai pembatas arus dalam suatu rangkaian elektronika. Resistor tetap dapat kita temui dalam beberpa jenis, seperti :

  • Metal Film Resistor
  • Metal Oxide Resistor
  • Carbon Film Resistor
  • Ceramic Encased Wirewound
  • Economy Wirewound
  • Zero Ohm Jumper Wire
  • S I P Resistor Network

Resistor Tidak Tetap (Variable Resistor)

Resistor tidak tetap atau variable resistor terdiridari 2 tipe yaitu :

  • Pontensiometer, tipe variable resistor yang dapat diatur nilai resistansinya secara langsung karena telah dilengkapi dengan tuas kontrol. Potensiometer terdiri dari 2 jenis yaitu Potensiometer Linier dan Potensiometer Logaritmis
  • Trimer Potensiometer, yaitu tipe variable resistor yang membutuhkan alat bantu (obeng) dalam mengatur nilai resistansinya. Pada umumnya resistor jenis ini disebut dengan istilah “Trimer Potensiometer atau VR”
  • Thermistor, yaitu tipe resistor variable yangnilairesistansinya akan berubah mengikuti suhu disekitar resistor. Thermistor terdiri dari 2 jenis yaitu NTC dan PTC. Untuk lebih detilnya thermistor akan dibahas dalam artikel yang lain.
  • LDR (Light Depending Resistor), yaitu tipe resistor variabel yang nilai resistansinya akan berubah mengikuti cahaya yang diterima oleh LDR tersebut.

Jenis-jenis resistor tetap dan variable diatas akan dibahas lebih detil dalam artikel yang lain.

Menghitung Nilai Resistor

Nilai resistor dapat diketahui dengan kode warna dan kode huruf pada resistor. Resistor dengan nilai resistansi ditentukan dengan kode warna dapat ditemukan pada resistor tetap dengan kapasitas daya rendah, sedangkan nilai resistor yang ditentukan dengan kode huruf dapat ditemui pada resistor tetap daaya besar dan resistor variable.

Kode Warna Resistor

Cicin warna yang terdapat pada resistor terdiri dari 4 ring 5 dan 6 ring warna. Dari cicin warna yang terdapat dari suatu resistor tersebut memiliki arti dan nilai dimana nilai resistansi resistor dengan kode warna yaitu :

kode warna resistor,rumus resistor,warna resistor

Resistor Dengan 4 Cincin Kode Warna

Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.

Resistor Dengan 5 Cincin Kode Warna

Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.

Resistor Dengan 6 Cincin Warna

Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.

Kode Huruf Resistor

Resistor dengan kode huruf dapat kita baca nilai resistansinya dengan mudah karenanilia resistansi dituliskan secara langsung. Pad umumnya resistor yang dituliskan dengan kode huruf memiliki urutan penulisan kapasitas daya, nilai resistansi dan toleransi resistor. Kode huruf digunakan untuk penulisan nilai resistansi dan toleransi resistor.


Kode Huruf Untuk Nilai Resistansi :

  • R, berarti x1 (Ohm)
  • K, berarti x1000 (KOhm)
  • M, berarti x 1000000 (MOhm)

Kode Huruf Untuk Nilai Toleransi :

  • F, untuk toleransi 1%
  • G, untuk toleransi 2%
  • J, untuk toleransi 5%
  • K, untuk toleransi 10%
  • M, untuk toleransi 20%

Rumus Resistor:

    Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :


Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan


Mencari resistansi total dalam rangkaian dapat menggunakan :

Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n


2. Dioda

    Dioda atau disebut juga sinyal dioda adalah komponen dasar semikonduktor aktif yang hanya bisa mengalirkan arus satu arah saja (forward bias) yaitu dari arah positip (Anoda) ke arah negatif (Katoda) namun memblok arus untuk arah sebaliknya. Dalam rangkaian elektronika dioda diibaratkan sebagai kran/katup listrik satu arah. Dioda memiliki dua elektroda yaitu elektroda positip (Anoda) dan elektroda negatif (Katoda). Secara umum dioda biasa dipakai untuk merubah arus bolak-balik (AC) menjadi arus searah (DC) atau disebut sebagai Rectifier.

    Dioda dibuat dari bahan semikonduktor seperti germanium (Ge), Silicon (Si) dan galium arsenide (GaAs), sifat listrik pada jenis material tersebut ialah menengah atau dengan kata lain tidak baik sebagai konduktor dan tidak baik juga sebagai insulator, sifat ini dinamakan semikonduktor.

    Material semikonduktor memiliki sangat sedikit "elektron bebas" karena molekul atomnya terkumpul bersama dalam bentuk pola kristal yang sering disebut "kisi kristal". Untuk meningkatkan daya hantar listrik pada material ini maka perlu dicampurkan "kotoran atom" pada struktur kristalnya sehingga menghasilkan lebih banyak elektron bebas dan lubang atom. Untuk menghasilkan sisi Negatif (katoda) pada dioda maka material semikonduktor biasanya dicampurkan kotoran atom dengan bahan seperti: Arsenik, Antimony atau Fosfor. dan untuk menghasilkan sisi positip (Anoda) dicampur dengan kotoran atom dari bahan Aluminium, Boron atau Galium. 

JENIS DAN SIMBOL DIODA

Seperti penjelasan diatas, Jenis dioda tergantung dari bahan material yang dipakai saat pembuatannya, dibawah ini adalah contoh gambar dan simbol dari jenis-jenis dioda:

Jenis dan Simbol Dioda

    1. Dioda Silicon
    Terbuat dari bahan Germanium, memiliki drop tegangan maju (forward volt drop) 0,7V, pada rangkaian elektronika biasa dipakai sebagai penyearah (rectifier). Contoh dioda Germanium adalah: 1N4000 series dan 1N5000 series dll.

    2. Dioda Germanium
    Terbuat dari bahan Silicon, memiliki drop tegangan maju (forward volt drop) 0,3V. Biasa diaplikasikan sebagai dioda penyearah. contoh dioda silicon adalah: IN4148 atau 1N914 dll.

    3. Dioda Zener
    Terbuat dari bahan silikon, dioda zener atau sering disebut juga "breakdown diode" berfungsi sebagai pembatas tegangan pada rangkaian, atau dengan kata lain dioda zener adalah komponen regulator tegangan sederhana.  dioda zener memiliki rating tegangan antara 1 sampai ratusan volt dengan daya mulai dari 1/4w.

    4. Light Emitting Diode atau LED
    Adalah jenis dioda yang dapat mengeluarkan cahaya, LED yang banyak dipasaran berbentuk kubah bulat dan juga kotak persegi dengan variasi warna merah, kuning, hijau, biru atau putih. batas arus maksimum LED adalah 20mA. dan memiliki drop tegangan maju (forward volt drop) antara 1,2v sampai 3,6v tergantung dari jenis warna LED.

    5. Dioda Schottky
    disebut juga dioda power memiliki drop tegangan maju (forward bias) yang rendah, namun rating arus dan tegangannya tinggi. Biasa dipakai sebagai penyearah pada frekuensi tinggi, sering dipakai pada rangkaian pengisian battre, AC Rectifier dan Inverter.contoh untuk dioda schotky adalah 5819 atau 58xx dll.

3. Transistor

    Transistor adalah komponen semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung (switching), stabilisasi tegangan, modulasi sinyal atau sebagai fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

    Transistor Bipolar adalah salah satu jenis transistor yang terbentuk dari 2 dioda sehingga memiliki polaritas atau sisi positif dan sisi negatif. Biasanya transistor Bipolar atau disebut dengan BJT (Basis Junction Transistor) memiliki 2 jenis, diantaranya yaitu Transistor PNP dan Transistor NPN. Transistor ini memiliki 3 polaritas yang biasa disebut B (Basis), E (Emiter), C (Collector). Basis berfungsi sebagai base atau tempat berkumpulnya kumpulan aliran arus yang masuk ke transistor, Emiter dan Collector sebagai aliran arus masuk dan keluar.

Lambang Transistor BJT


Sudah jelas seperti gambar di atas bahwa transistor PNP memiliki simbol yang arah panahnya masuk dan sebaliknya untuk NPN arah panah dari emiter mengarah keluar.

Bentuk aliran arus pada sebuah transistor dapat dirumuskan dengan hukum KCL ( Kirchoff Current Law) Atau hukum Kirchoff I, yang dirumuskan sebagai berikut.

Ie = Ic Ib  

Keterangan : 
Ie = Arus Emitter
Ic = Arus Collector
Ib = Arus Basis

Pada Transistor BJT nilai arus Ib relatif sangat kecil terhadap Ic, maka Ib ini dapat diabaikan. Sehingga persamaan diatas bisa berubah menjadi

Ie = Ic

Keterangan :
Ie = Arus Emitter
Ic = Arus Collector

Karakteristik input merupakan karakteristik dari tegangan base dan emitter (VBE) sebagai fungsi arus base (IB) dengan VCE dalam keadaan konstan. Karakteristik ini merupakan karakteristik dari junction emitter-base dengan forward bias atau sama dengan karakteristik diode pada forward bias. Pada BJT seluruh pembawa muatan akan melewati junction Base-Emittor menuju Collector maka arus pada basis menjadi jauh lebih kecil dari diode P-N dengan adanya faktor hfe. Penambahan nilai VCE megakibatkan arus IB akan berkurang. Arus IB akan mengalir jika tegangan VBE > 0,7 V

Karakteristik output merupakan karakteristik dengan tegangan emitter (VCE) sebagai fungsi arus kolektor (IC) terhadap arus base (IB) yang tetap seperti ditunjukkan pada Gambar 4. Pada saat IB=0, arus IC yang mengalir adalah arus bocor ICB0 (pada umumnya diabaikan), sedangkan pada saat IB ≠ 0 untuk VCE kecil (<< 0,2 V), pembawa muatan di basis tidak efisien dan transistor dikatakan dalam keadaan saturasi dengan IB > IC / hfe . Pada saat VCE diperbesar IC pun naik hingga melewati level tegangan VCE saturasi (0,2 -1 V) hingga transistor bekerja dalam daerah aktif dengan IB = IC / hfe. Pada saat ini kondisi arus IC relatif konstan terhadap variasi tegangan VCE.

Gelombang input dan output transistor


4. Op-amp LM741


    Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

Op-Amp memiliki beberapa karakteristik, di antaranya:
a. Penguat tegangan tak berhingga (AV = ∼)
b. Impedansi input tak berhingga (rin = ∼)
c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

Rangkaian dasar Op-Amp


    Op Amp IC 741 adalah sirkuit terpadu monolitik, yang terdiri dari Penguat Operasional tujuan umum. Ini pertama kali diproduksi oleh semikonduktor Fairchild pada tahun 1963. Angka 741 menunjukkan bahwa IC penguat operasional ini memiliki 7 pin fungsional, 4 pin yang mampu menerima input dan 1 pin output.

    Op Amp IC 741 dapat memberikan penguatan tegangan tinggi dan dapat dioperasikan pada rentang tegangan yang luas, yang menjadikannya pilihan terbaik untuk digunakan dalam integrator, penguat penjumlahan, dan aplikasi umpan balik umum. Ini juga dilengkapi perlindungan hubung singkat dan sirkuit kompensasi frekuensi internal yang terpasang di dalamnya.

Konfigurasi PIN

Spesifikasi: 
Respons karakteristik kurva I-O:


5. Relay

    Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

Simbol di proteus


6. Ground

  Suatu komponen listrik yang bisa meniadakan beda potensial sebagai pelepasan muatan listrik berlebih pada suatu instalasi listrik dengan cara mengalirkannya ke tanah.

Simbol di proteus




7. Power Supply

    Catu daya merupakan suatu Rangkaian yang paling penting bagi sistem elektronika. Power supply atau catu daya adalah suatu alat atau perangkat elektronik yang berfungsi untuk merubah arus AC menjadi arus DC untuk memberi daya suatu perangkat keras lainnya. Sumber AC yaitu sumber tegangan bolak-balik, sedangkan sumber tegangan DC merupakan sumber tegangan searah. Power supply/unit catu daya secara efektif harus mengisolasi rangkaian internal  dari  jaringan  utama,  dan  biasanya  harus  dilengkapi  dengan pembatas  arus  otomatis  atau  pemutus  bila  terjadi  beban  lebih  atau hubung  singkat.  Bila  pada  saat  terjadinya  kesalahan  catu  daya, tegangan  keluaran DC meningkat  di  atas  suatu  nilai  aman maksimum untuk rangkaian internal, maka daya secara otomatis harus diputuskan.

Simbol di proteus



8. LDR

    LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini. LDR juga dapat digunakan sebagai sensor cahaya. Perlu diketahui bahwa nilai resistansi dari sensor ini sangat bergantung pada intensitas cahaya. Semakin banyak cahaya yang mengenainya, maka akan semakin menurun nilai resistansinya. Sebaliknya jika semakin sedikit cahaya yang mengenai sensor (gelap), maka nilai hambatannya akan menjadi semakin besar sehingga arus listrik yang mengalir akan terhambat.

LDR di proteus




Grafik respon



9 Motor DC

    Motor DC adalah motor listrik yang memerlukan suplai tegangan arus searah pada kumparan medan untuk diubah menjadi energi gerak mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Motor arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/directunidirectional.

Motor DC adalah piranti elektronik yang mengubah energi listrik menjadi energi mekanik berupa gerak rotasi. Pada motor DC terdapat jangkar dengan satu atau lebih kumparan terpisah. Tiap kumparan berujung pada cincin belah (komutator). Dengan adanya insulator antara komutator, cincin belah dapat berperan sebagai saklar kutub ganda (double pole, double throw switch). Motor DC bekerja berdasarkan prinsip gaya Lorentz, yang menyatakan ketika sebuah konduktor beraliran arus diletakkan dalam medan magnet, maka sebuah gaya (yang dikenal dengan gaya Lorentz) akan tercipta secara ortogonal diantara arah medan magnet dan arah aliran arus. Kecepatan putar motor DC (N) dirumuskan dengan Persamaan berikut.


Simbol motor DC di proteus:

 


 

4. Langkah Langkah Percobaan dan Prinsip Kerja [Kembali]

a. Sensor Infrared (Line Reading)

  • Siapkan alat dan bahan (IR Obstacle, Pot-hg, potensiometer, resistor, ground, transistor, opamp, power supply, lamp)
  • Letakkan alat dan bahan tersebut, seperti gambar rangkaian
  • Lalu sambungkan baterai ke IR dan op amp
  • Lalu sambungkan output IR ke kaki op amp
  • Lalu sambungkan kaki op amp satu lagi ke potensiometer
  • Lalu sambungkan op amp ke resistor
  • Lalu sambungkan resistor ke transistor
  • Lalu sambungkan transistor ke relay kaki relay
  • Lalu sambungkan relay ke baterai
  • Lalu sambungkan baterai ke motor
  • Lalu sambungkan ground di bawah rangkaian
  • Jalankan simulasinya

b. Sensor Cahaya

  • Siapkan alat dan bahan (LDR, pot-hg, potensiometer, dioda, baterai, resistor, ground, transistor, opamp, power supply, motor DC)
  • Letakkan alat dan bahan tersebut, seperti gambar rangkaian
  • Lalu sambungkan potensiometer ke kaki inverting op amp
  • Lalu sambungkan LDR ke kaki non inverting op amp
  • Lalu sambungkan op amp ke transistor
  • Lalu sambungkan kaki relay ke collector transistor
  • Lalu sambungkan relay ke baterai
  • Lalu sambungkan baterai ke motor Dc
  • Lalu sambungkan motor Dc ke relay
  • Lalu sambungkan ground di bawah rangkaian
  • Jalankan simulasinya

c. Sensor Jarak

  • Siapkan alat dan bahan (Touch sensor, potensiometer, resistor, ground, transistor, opamp, power supply, lamp)
  • Letakkan alat dan bahan tersebut, seperti gambar rangkaian
  • Lalu sambungkan power supply ke touch sensor
  • Lalu sambungkan output touch sensor ke kaki op amp
  • Lalu sambungkan kaki op amp satu lagi ke potensiometer
  • Lalu sambungkan op amp ke resistor
  • Lalu sambungkan resistor ke transistor
  • Lalu sambungkan transistor ke relay kaki relay
  • Lalu sambungkan relay ke baterai
  • Lalu sambungkan baterai ke motor
  • Lalu sambungkan ground di bawah rangkaian
  • Jalankan simulasinya

d. Sensor Api 

  • Siapkan alat dan bahan (flame sensor, potensiometer, dioda, baterai, resistor, ground, transistor, opamp, power supply, motor DC)
  • Letakkan alat dan bahan tersebut, seperti gambar rangkaian
  • Lalu sambungkan pot yang diatasnya power dan dibawahnya ground ke testpin pada sensor
  • Lalu sambungkan ground ke GND pada sensor
  • Lalu sambungkan generator dc ke Vcc pada sensor 
  • Lalu sambungkan induktor ke out pada sensor
  • Lalu sambungkan induktor ke kapasitor
  • Lalu sambungkan induktor ke resistor
  • Lalu sambungkan resistor ke kaki inverting opamp detektor
  • Lalu sambungkan ke resistor
  • Lalu sambungkan resistor ke transistor
  • Lalu sambungkan transistor ke dioda
  • Lalu sambungkan dioda ke relay
  • Lalu sambungkan kaki relay ke baterai dan fan
  • Lalu sambungkan ground di bawah rangkaian
  • Kemudian masukkan library ke sensor
  • Jalankan simulasinya

e. Sensor Asap

  • Siapkan alat dan bahan (MQ-5, potensiometer, dioda, baterai, resistor, ground, transistor, opamp, power supply, motor DC)
  • Letakkan alat dan bahan tersebut, seperti gambar rangkaian
  • Lalu sambungkan potensiometer ke kaki inverting op amp
  • Lalu sambungkan LDR ke kaki non inverting op amp
  • Lalu sambungkan op amp ke transistor
  • Lalu sambungkan kaki relay ke collector transistor
  • Lalu sambungkan relay ke baterai
  • Lalu sambungkan baterai ke fan
  • Lalu sambungkan fan ke relay
  • Lalu sambungkan ground di bawah rangkaian
  • Jalankan simulasinya

Prinsip Kerja






a. Kontrol gas  

    Ketika asap lingkungan sekitar tebal, maka sensor MQ-2 akan mendeteksinya. Tegangan akan masuk menuju op amp, kemuadian menuju opamp, menujut transistor, dan menuju ke kaki relay. Saat asap lingkungan tipis atau tidak ada, relay akan dalam keadaan off, yang membuat kipas akan mati, sebaliknya apabila suhu tebal, relay akan dalam keadaan on, yang membuat kipas akan hidup.

b. Kontrol cahaya

    Pada saat banyaknya intensitas cahaya yang masuk ke robot, kemudian cahaya mengenai sensor LDR, maka relay akan berpindah ke kanan yang membuat motor dc mematikan lampu agar tidak terlalu banyak cahaya yang masuk, sedangkan pada saat intensitas cahaya kecil, mengenai sensor LDR, maka relay akan berpindah ke kiri yang akan membuat lampu menyala.

c. Kontrol jarak

    Pada saat manusia mendekati robot, maka sensor jarak akan mendeteksinya. Tegangan akan masuk menuju op amp, kemudian menuju resistor, menuju transistor, dan menuju ke kaki relay. kemudian relay akan aktif dan membuat robot berhenti karena terputus nya kabel.

d. Kontrol infrared

    Ketika garis ditanah dibaca oleh infrared, maka sensor IR akan mendeteksinya. Tegangan akan masuk menuju op amp, kemuadian menuju resistor, menujut transistor, dan menuju ke kaki relay. Saat garis jelas, relay akan dalam keadaan on, yang membuat arus mengalir ke motor, sebaliknya apabila suhu tidak terlalu jelas, relay akan dalam keadaan off, yang membuat arus terputus menuju motor.

e. Kontrol api

    Pada saat banyaknya intensitas api didekat robot, kemudian api mengenai sensor flame, maka relay akan berpindah ke kanan yang membuat arus tidak mengalir, sedangkan pada saat intensitas api kecil atau tidak ada,  maka relay akan berpindah ke kiri yang akan membuat arus mengalir ke motor.


Video Menjalankan Rangkaian




 



Download Rangkaian [klik]

Download Video Menjalankan Rangkaian [klik]

Download Video Rangkaian [klik] (size > 100mb lebih)

Download datasheet resistor [klik]

Download datasheet transistor NPN [klik]

Download datasheet opamp [klik]

Download datasheet dioda [klik]

Download datasheet relay [klik]

Download datasheet motorDC [klik]

Download datasheet baterai [klik]

Download datasheet Voltmeter [klik]

Download datasheet Flame sensor [klik]

Download datasheet gas sensor [klik]

Download datasheet IR sensor [klik]

Download datasheet LDR (sensor cahaya) [klik]

Download datasheet Sensor Jarak(Touch) [klik]

Download sensor api [klik]

Download sensor asap [klik]

Download sensor garis (IR) [klik]

Download sensor LDR [klik]

Download sensor jarak  [klik]


(Video ada dua part karena durasinya lebih dari 10 menit)

Download Video Rangkaian part 1 [klik] (104,2 mb)

Download Video Rangkaian part 2 [klik] (19,8 mb)

Komentar

Postingan populer dari blog ini

Op Amp Ramp Generator

Home

Modul 1 Sistem Digital